

Speaker: DAVID SAORNIL

OXIDATIVE STRESS IN SWINE

Thursday 4th june 2015

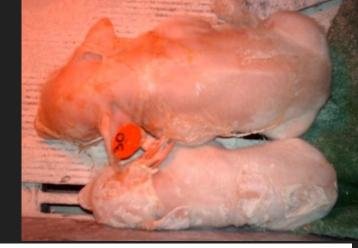
Table of content

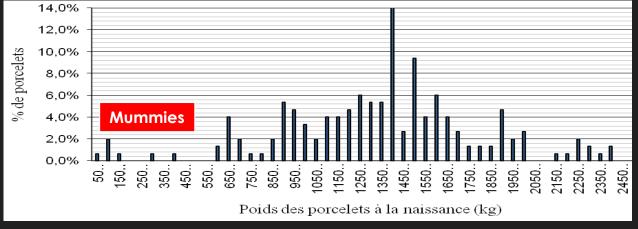
- O Litter size
- O Heterogeneity at birth & piglet immaturity, vitality
- Oxidative stress & micronutrition
- Embryo Micronutrition
- Antioxidants and Reproduction
- Antioxidants and weaning
- Practical consequencies

Major changes 10y.

- OHyperprolific sows: 1 litter size
 - OPiglet birth weight heterogeneity
 - Olmmaturity/Vitality: New concepts
- ONew emergent viral disease: PRRS, PMWS, PED...
- O<u>Nutrition</u>:
 - Olmmune response / AA metabolism and requirements
 - OMicro-elements & Macro-nutrition
 - OMicroflora & Nutrition

Increased Litter Size.




OLast 7 years:

- ○30% Tlitters +15 piglets total born/litter
- ODenmark: 90% +16 piglets

Consequencies at birth

- O average birth weight
- O Tweight heterogeneity

Piglet live weight at birth in grams. (Lallemand 2008)

Heterogeneity at birth.

OUsually described as **piglet birthweight range**.

Forgetting:

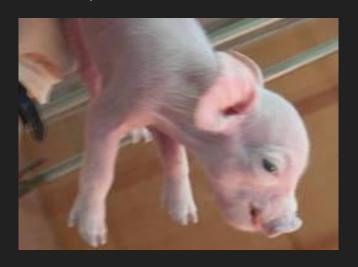
OVitality

OMorphology

OMaturity

Piglet immaturity.

- Well known in human medicine (Premature babies)
- OSuggested by Foxcroft (62 piglets!)
- Confirmed by Sacy (Lallemand 2008: 924 piglets)


Assumption: Some piglets suffering from foetal growth retardation (IUGR) and are really not mature.

Piglet immaturity.

- Very light but also immature
 - OBig oval shapped head (dolphin head), Vitality.
 - O TBrain/Liver ratio

Brain/liver ratio	Mean	SD	N
Immatures	1.68ª	0.68	147
Matures	1.01 ^b	0.43	282
Total	1.24	0.61	429

○↓ metabolism and performance, ↑ mortality (IUGR)

Other consequencies.

- Clonger farrowing durations
 - Oxytocin injections
 - of sleevings
- **1** Stillborn piglets = 0.86 x Total born 5
 - Clast 3rd of parturition = 71% (Sacy 2008, Canario 2007)
 - Most of them asphyxiated
- ↓ piglet vitality at birth
 - ↓ colostrum intake
 - of mortality within the first 2 days

What is piglet vitality?

- OBorn dead piglets easy to describe: Born/alive
- OVitality: More difficult.
- Vitality score published by Lallemand (Sacy 2008, Le Treut: IPVS 2010)

Vitality	Observations
0	Piglet not moving nor breathing during first 15" of life.
1	Piglet still not moving after 15", but starts breathing or try to start breathing
2	Piglet breathes and starts really moving in the first 15" of life.
3	Piglet moves actively, breathes well and tries to get up during the first 15" of life.

Piglet vitality at birth

OBased on the description and scoring of the piglet behavior during the first 15" of life.

Effect of rank at birth

Clallemand vitality score: useful to screen options at farrowing (feed additives, management, etc...) (Sacy

2008)

Piglet vitality at birth

Olmportance of rank at birth: Even worse for the last ones!

Ox. Stress & Reproduc.

OPere (Inra): Lost between ovulation and born alive piglets.

	Sow 1	Sow 2	Sow 3
Lutea corps/ovary	4.8	8.3	16.9
Foetus/horn at day 35	3	6.6	10.8
Piglets number/horn at day 112	3	4.8	4.9

- OLitter size: Challenge of early gestation
- The idea of oxidative stress emerged:
 - Very fast cell multiplication
 - ONidation: Local inflammatory responses / embryo rejection

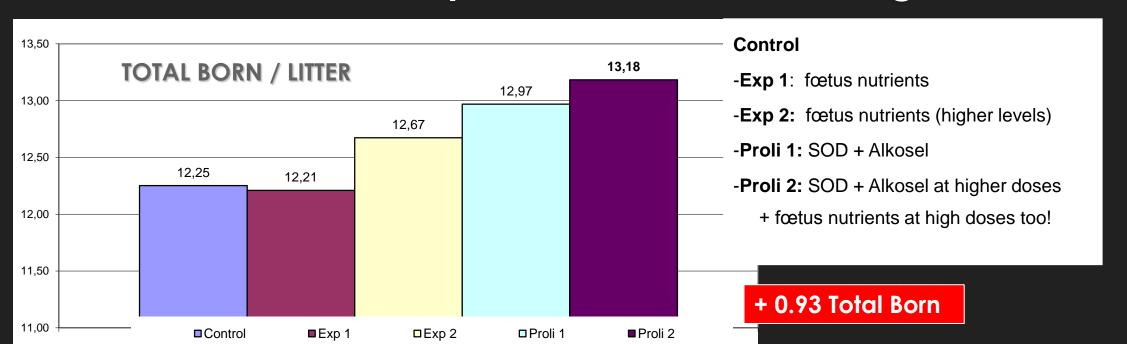
Embryo Micronutrition.

- OVery specific: Tryptophan, Glycine and Folic acid.
- OThe role of Vitamin B9 in reproduction described in the early 80's: MATTE (PhD thesis 1987). Effect of early B9 supplementation on litter size: $10.5 \rightarrow 12.0$ piglets.

	Nullip	arous	Multiparous		
Folic acid	-	+	-	+	
Born alive	9.1	9.3	11.5	13.5	
Embryonic mortality (%)	14.4	12.8	39.2	32.6	

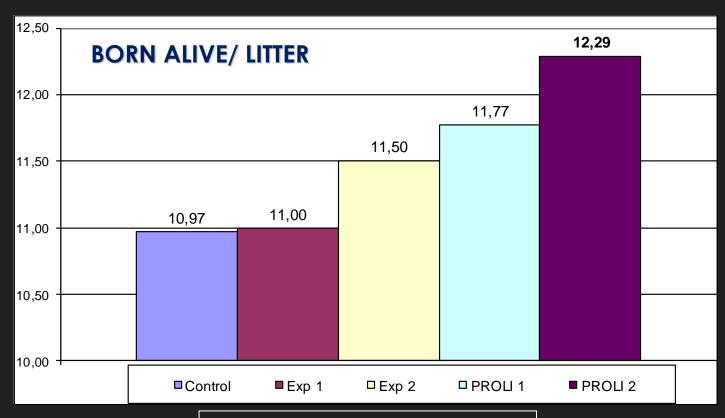
Adapted from Lindeman et Kornegay 1989, Giguere 2000, Guay 2004)

Antioxidants.



- O<u>Gestation:</u> Phase of a high <u>intense oxidative stress</u>. Very high mithocondrial activity.
 - OImplantation process failure.
 - OIntra-uterine growth delay,

Commercial farm trial

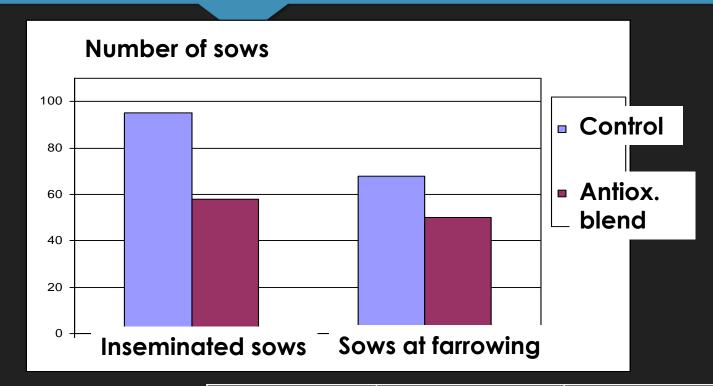


- O450 Topigs sows (farrow to finish, France)
- O4 different blends top dressed after weaning

Antiox. Blend & live born

+1.32 live born piglet/litter

Immaturity & Vitality


	Antiox. Foetal Growth Retardation (% of piglets in a litter)	
N	lo	21.1ª
Yes		8.8 ^b
No	P1	26.7*
	P2-5	11.0
	P>5	25.6*
	P1	6.3*
Yes	P2-5	7.4
	P>5	12.7*

- -Reduction of the % of **immature piglets** in a litter.
- -Major effect on piglets from P1 and old multiparous sows.
- -<u>Same effect on **vitality**</u>: 1.63 vs 1.16 (P<0.05)

*: P<0.05 Sacy 2008

Fertility

- ○600 sow farm. France
- OFertility:
 - **OSummer infertility**
 - OHeat stress prevention
 - OBetter "heat" behaviour

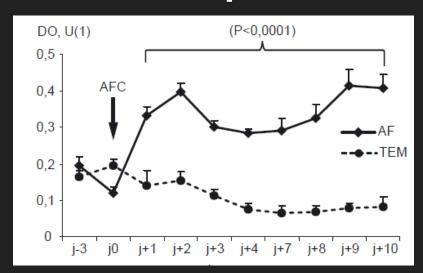
Control	Antiox blend	Farm average (1 year without antiox blend)
73.1%	87.7%	76.2%

Weaning.

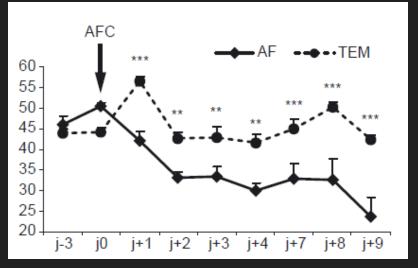
OIntense Oxidative stress.

O6 days after weaning (plasma, healthy piglets)

Tocoferols	-75% to -80%
Vit. C	-75% to -80%
Zinc	-45% to -50%
Selenium	+18%
Gluthation Peroxidase	+25% to +30%
Total Glutathion	-20%
Reduced/Oxidized Gluthation	-45%

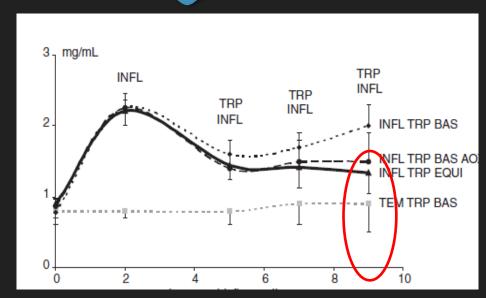

From Robert 2009

Gluthation system activated: Inflammation, Catabolism

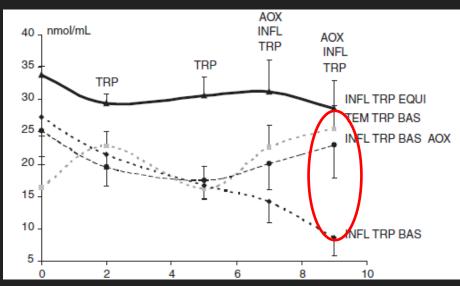

Weaning.

• Nutrient requirements profile changes with inflammation

Haptaglobine


Tryptophan

- OTryptophan reduction: Drop in feed intake
- OHaptaglobin increase: Strong inflammation process


Weaning & antioxidants

Le Floch 2004

Haptaglobine conc. after FA challenge

Trp conc. after FA challenge

- O Antioxidant blend (Vit. E, Vit. C, organic Se, SOD) significantly reduced Haptaglobine conc. and maintained Trp. conc. in blood.
- Interesting effect on feed intake and recovery phase.

Practical benefits

- OPiglets: ADG + mortality postweaning.
- France, 2002. Effect of an antioxidant blend (Vit. E, organic Se, SOD) in a Circovirus contaminated environment before Circovirus vaccination.

	5 groups before	1° group with	2° group with	3° group with	3 groups with average
Piglets (n)	131	157	130	130	139
starting LW (kg)	8.01	7.58	8.47	7.64	7.87
Finishing LW (kg)	33.06	33.47	38.48	34.83	35.55
DurATION (d)	54.5	51.6	56	53	53.5
ADG (g/d)	460	502	536	513	518
Post-weaningMortality (%)	9.9	4.5	3.8	2.3	3.6
Fattening Mortality (%)	5 %	<1%	<1%	<1%	< 1%

Take home message.

- Sows: Antioxidants efficient improving reproduction and piglet quality.
 Should be more considered for increased:
 - OFertility
 - OLitter size
 - OPiglet quality
- Weaning: Intense oxidative stress. Even on healthy farms.
 - Antioxidants are really effective for better control weaning stress.
- Combination of different but complementary antioxidants: KEY
 - OVit. E, Organic Selenium, SOD.