Effect of feed enzymes on growth and feed efficiency in finisher pigs

P. Lawlor¹, **A. Torres-Pitarch¹**, E. Manzanilla¹, **U. McCormack¹**, V. Beattie², E. Magowan³, G. Gardiner⁴, J. O'Doherty⁵,

The Irish Agriculture and Food Development Authority

1. Evaluation of phytase, carbohydrases and protease enzymes in diets containing rapeseed meal and wheat DDGS for finisher pigs

Introduction

• Objective:

✓ Establish the combination of feed additives which optimises feed efficiency in finisher pigs

Hypothesis

 Supplementation of enzymes into by-product (RSM and DDGS) based diets can improve feed efficiency in finisher pigs.

Material and Methods

DIETARY TREATMENTS:

- 1) Positive control (PC): exceeds NRC (2012) requirements
- 2) Negative control (NC): basal diet with 5% reduction in energy and amino acid levels.
- 3) NC + Heat stable phytase
- 4) NC + Xylanase and β-glucanase complex (Xβ)
- 5) NC + protease
- 6) NC + phytase + protease
- 7) NC + phytase + $X\beta$
- 8) NC + X β + protease
- 9) NC + phytase + $X\beta$ + protease

162 pigs (~39kg LW) - Duration: 76 days

Material and Methods

	T1	T2	Т3	Т4	T5	Т6	T7	Т8	Т9
Phytase, g/tone	-	-	100	-	-	100	100	-	100
Carbohydrase, g/tone	-	-	-	100	-	-	100	100	100
Protease, g/tone	-	-	-	-	200	200	-	200	200
Net Energy, MJ/kg	9.9	9.4	9.4	9.4	9.4	9.4	9.4	9.4	9.4
Av. Lysine, g/kg	0.83	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79
P:Ca, g/g	0.85	0.85	0.83	0.85	0.85	0.83	0.83	0.85	0.83
Av. Phosporus , g/kg Phytase sparing effect	0.30	0.30	0.22 +0.15	0.30	0.30	0.22 +0.15	0.22 +0.15	0.30	0.22 +0.15

*Calculated composition

✓ Diets based on Rapeseed meal (9.6-10%), wheat (30-39%), barley (35-38%) and wheat DDGS (20%)

Results – Global period (39-106 kg)

ADFI, g/day FCR, g/g T1, Positive control 1041 2667^b 2.60^B T2, Negative control 1037 2847^a 2.79^{A,B} T3, NC+Phytase 1067 2880^a 2.77A,B T4, NC+Carbohyrdase (Xβ) 2.73A,B 1086 2926^a 1051 2814a,b 2.71A,B T5, NC+Protease 2.81^{A,B} T6, NC+Phytase +Protease 1042 2867^a T7, NC+Phytase+Xβ 1029 2779a,b 2.76^{A,B} T8, NC+Xβ+Protease 1036 2879^a 2.83^A **T9**, NC+Phytase+Xβ+Protease 1069 2860^a 2.68^{A,B} Pooled SEM 23.1 41 0.055 **P-Value** 0.70 Treatment < 0.001 0.089 < 0.001 0.18 Sex <.0001 Time < 0.001 <.0001 < 0.001

0.67

ADG, g/day

Proc Mixed of SAS, repeated measures, pen experimental unit

Trt*sex

Model includes trt, sex and treat*sex. Covariate by initial body weight

< 0.01

 \mathcal{O}

0.11

Results – Global period (39-106 kg) ECO

Contrast estimates for dietary formulation

	ADG, g/day	ADFI, g/day	FCR, g/g
Positive Control vs. Negative Control			
Estimate	-11.0 ± 24.24	-189.2 ± 43.4	-0.16 ± 0.058
P-value	0.65	< 0.01	< 0.01
High P vs. reduced P			
Estimate	-1.8 ± 15.40	-19.5 ± 27.3	-0.02 ± 0.036
P-value	0.90	0.48	0.51

Proc Mixed of SAS, repeated measures, pen experimental unit Model includes trt, sex and treat*sex. Covariate by initial body weight

N S

FCE

ECOFCE

Results – Global period (39-106 kg)

Interaction protease x sex

	ADG (g/day)	ADFI (g/day)	FCR (g/day)
Female			
Protease -	1001 ± 18.3	2711 ± 33.5 ^{a,b}	$2.75 \pm 0.044^{a,b}$
Protease +	994 ± 22.2	2770 ± 40.5 ^{a,b}	2.82 ± 0.053 ^{a,b}
Male			
Protease -	1096 ± 16.8	2802 ± 30.9 ^a	2.59 ± 0.040 ^a
Protease +	1092 ± 20.9	2732 ± 38.2 ^b	2.49 ± 0.050 ^b
P-value	0.93	0.03	0.03

Proc Mixed of SAS, repeated measures, pen experimental unit Model includes trt, sex and treat*sex. Covariate by initial body weight

Conclusions

- A reduction of 5% in energy and AA on a commercial Irish diet might not be sufficient to see the potential of feed enzymes
- Phytase: The sparing effect for P and Ca was effective
- Xylanase and β-glucanase complex: did not improve FCR
- Protease: may have greater potential to increase feed efficiency in males than in females
- Excellent performance without soya

Evaluation of feed enzymes in liquid diets for growing pigs

Introduction

Processing effect of liquid feeding?

- Activation of endogenous / exogenous enzymes
- Pre-degradation of NSP present in the diet

Exp. 1 – Soaking + Enzymes

Objective:

To assess the efficacy of pre-soaking the cereal fraction and enzyme supplementation of liquid diets on pig growth performance, nutrient digestibility and diet viscosity.

Hypothesis:

- Pig growth and FE is improved by soaking ingredients with added enzymes
- Enzymes supplementation \downarrow viscosity of soaked diets

Introduction

Probe/sensor feeding

Experiment

Soaking <u>cereal fraction only</u> with enzyme supplementation

Treatments:

- 1) Fresh liquid diet (FLD)
- 2) FLD supplemented with enzyme (FLD+, Rovabio, Adisseo)
- 3) Soaked liquid diet (SLD)
- 4) SLD supplemented with enzyme (SLD+, Rovabio, Adisseo)
- 36 pens with 7 pigs/pen
- Duration: 72 days
- 3 hours soak

Diet Ingredients and nutritional composition

- Barley, wheat, soya, pollard based diet
- Only barley, wheat & pollard component soaked
- Balancer containing soya, AA, minerals and vitamins mixed just prior to feeding

Nutrient	Content
DM, g/kg	868
Protein, g/kg	160
Ash, g/kg	47
Fat, g/kg	20
Fibre, g/kg	42
NDF, g/kg	167
ADF, g/kg	54
DE, MJ/kg	13.00
NE, MJ/kg	9.39
Lysine, g/kg	10.61
SID LYSpig, g/kg	9.15
Ca, g/kg	6.48
Digestible P, g/kg	2.40

Results

Growth performance

		Soaking			Enzyme		
	0h.	3h.	P-value	-	+	P-value	
Initial weight, kg	31.1	31.0	0.97	31.0	31.0	1.00	
Final weight, kg	97.8	99.0	0.14	98.6	98.2	0.67	
ADG, g/day	921	947	0.14	937	931	0.74	
ADFI, g/day	2484	2508	0.66	2499	2494	0.92	
FCR, g/day	2.72	2.67	0.52	2.68	2.70	0.78	

Proc Mixed of SAS, repeated measures, pen experimental unit Model includes soaking | enzyme | sex time. Covariate by initial body weight

EC •• FCE

Results

Carcass quality

	Soaking			Enzyme			
	0h.	3h.	P-value	_	+	P-value	
Cold weight, kg	71.1	72.0	0.28	71.7	71.5	0.82	
Lean meat, %	56.9	57.0	0.71	57.3	56.6	0.01	
Muscle, mm	49.9	50.0	0.78	50.4	49.5	0.09	
Fat, mm	12.7	12.6	0.69	12.3	13.0	0.04	

Proc Mixed of SAS, repeated measures, pen experimental unit Model includes soaking enzyme sex time. Covariate by initial body weight

Conclusions

- ADG, ADFI and FCR were not affected by enzyme supplementation.
- Lean meat yield was reduced by enzyme supplementation
 - Additional energy released
 - Insufficient AA for lean growth?
- Numerical increases in ADG due to soaking of cereals which were significant in first weeks

EVALUATION OF PROTEASE AND ALPHA-GALACTOSIDASE IN DIETS BASED ON FIELD BEANS

Introduction

Objective:

To assess the efficacy of supplementation of

- 1. protease (Ronozyme Proact, DSM), and
- 2. a complex of α -galactosidase and xylanase (ITPSA)
- in a barley/faba bean diet on pig growth and nutrient digestibility.

Dietary treatments

- 1) Cereal / soya optimum energy and AA
- 2) Cereal / soya low energy and AA
- 3) Cereal / field beans optimum energy and AA
- 4) Cereal / field beans low energy and AA
- 5) Cereal / extruded field beans low energy and AA
- 6) Cereal / field beans low energy and AA + protease
- 7) Cereal / field beans low energy and AA + α -galactosidase
- Cereal / field beans low energy and AA + protease and αgalactosidase

Questions Answered

A. 2 x 2 (Density – high, low & Diet – Soya, Bean)

- 1. Cereal / soya optimum energy and AA
- 2. Cereal / soya low energy and AA
- 3. Cereal / field beans optimum energy and AA
- 4. Cereal / field beans low energy and AA
- B. 2 x 2 (Enzyme yes, no & Enzyme Type protease, galactosidase)
- 4. Cereal / field beans low energy and AA
- 5. Cereal / field beans low energy and AA + protease
- 6. Cereal / field beans low energy and AA + galactosidase
- 7. Cereal / field beans low energy and AA + protease and galactosidase

Other comparisons

- 4. Cereal / field beans low energy and AA
- 8. Cereal / extruded field beans low energy and AA

Ingredient composition

	Diet 1	Diet 2	Diet 3	Diet 4	Diet 5	Diet 6	Diet 7	Diet 8
	Opt. E&AA	Low E&AA	Opt. E&AA	Low E&AA	Low E&AA	Low E&AA	Low E&AA	Low E&AA
Ingredient (kg/ton)					+Protease	Galactosidase	+Prot&Galacto	+extrusion
Barley	762.9	830.2	477.3	544.0	543.8	543.8	543.6	596.0
Soya Hi-Pro	176.4	143.6	45.3	12.5	12.5	12.5	12.5	8.0
Field beans	0.0	0.0	400.0	400.0	400.0	400.0	400.0	0.0
Field beans extruded	0.0	0.0	0.0	0.0	0.0	0.0	0.0	368.0
Fat, soya oil	33.5	0	48.61	15.2	15.24	15.24	15.24	0.30
Lysine HCl	3.84	3.47	2.99	2.60	2.62	2.62	2.62	2.80
DL-Methionine	1.26	0.83	2.47	2.10	2.07	2.07	2.07	2.00
L-Threonine	1.67	1.38	2.00	1.70	1.72	1.72	1.72	1.70
L-Tryptophan	0.09	0.04	0.59	0.5	0.53	0.53	0.53	0.5
Vitamins and Minerals	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Salt feed grade	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Mono DiCal Phos	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Limestone flour	11.0	11.2	11.5	12.0	12.0	12.0	12.0	11.5
Celite	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Protease ¹	0	0	0	0	0.2	0	0.2	0.0
α-galactosidase ²	0	0	0	0	0	0.19	0.19	0.0

¹Ronozyme Proact, DSM, Germany. ²ITPSA, Spain.

Chemical composition

	Diet 1	Diet 2	Diet 3	Diet 4	Diet 5	Diet 6	Diet 7	Diet 8
	Opt. E&AA	Low E&AA	Opt. E&AA	Low E&AA	Low E&AA	Low E&AA	Low E&AA	Low E&AA
Nutrient (g/kg)					+Protease	+Galactosidase	+Prot&Galacto	+extrusion
Dry matter	884.3	879.7	857.4	852.9	852.9	852.9	852.9	879.3
Protein	165.0	155.0	165.0	155.0	155.0	155.0	155.0	155.0
Digestible energy, MJ/kg	13.9	13.1	13.7	12.9	12.9	12.9	12.9	13.0
Net Energy, MJ/kg	10.0	9.3	10.0	9.3	9.3	9.3	9.3	9.3
Lysine	11.0	10.0	11.3	10.3	10.3	10.3	10.3	10.3
SID LYSpig	9.9	8.9	9.9	8.9	8.9	8.9	8.9	8.9

¹Ronozyme Proact, DSM, Germany. ²ITPSA, Spain.

Preliminary results

Growth performance

	ADG	ADFI	FCR	Initial LW	Final LW
	(g/day)	(g/day)	(g/day)	(kg)	(kg)
Density					
High	1039	2271	2.19 ^a	38.8	111.5
Low	1027	2364	2.31 ^b	38.8	110.8
P-value	0.59	0.07	0.001	0.95	0.63
Protein source					
Soyabeans	1002 ^b	2242 ^b	2.24	39	109.2 ^b
Field beans	1064ª	2394ª	2.26	39	113.1ª
P-value	0.01	0.001	0.71	0.97	0.01

Proc mixed of SAS with repeated measures. Model includes density|protein_source|sex Covariated by initial body weight. ADFI and FCR expressed as DM basis.

Preliminary results

Growth performance

	ADG	ADFI	FCR	Initial LW	Final LW
	(g/day)	(g/day)	(g/day)	(kg)	(kg)
Protease					
-	1068	2459	2.31	38.9	114.1
+	1070	2392	2.24	39.1	114.2
P-value	0.93	0.11	0.04	0.54	0.90
α-Galactosidase					
-	1067	2430	2.27	38.9	114.0
+	1071	2422	2.27	39.0	114.3
P-value	0.81	0.84	0.69	0.80	0.78

Proc mixed of SAS with repeated measures. Model includes protease|galactosidase|sex Covariated by initial body weight. ADFI and FCR expressed as DM basis.

Conclusions

- **Density:** Intake \uparrow , ADG \leftrightarrow and FCE poorer on low density diet
- Protein Source: Intake \uparrow , ADG \uparrow and FCE \leftrightarrow on bean diets
- Protease: FCE improved due to \downarrow intake while ADG \leftrightarrow
- α-Galactosidase: No Effect
- Extrusion: No Benefit to pig growth
- Field beans effective as a protein source in pig diets with or without enzymes

Acknowledgements

- Tomas Ryan, Henry Allen, David Clarke, John Walsh, Pat Magnier.
- Funded from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement n°311794.
- A. Torres-Pitarch PhD is funded by the Teagasc Walsh Fellowship programme.

The Irish Agriculture and Food Development Authority

Questions?

The Irish Agriculture and Food Development Authority