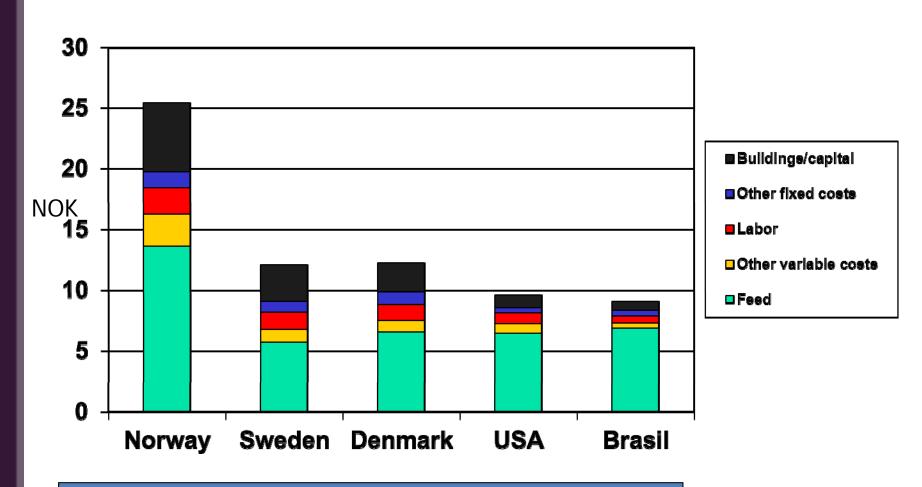

Manager of technology and product development
 Norsvin USA LLC
 2007 – 2009

Head of genetic department, Norsvin International AS. 2005 – 2007

PhD in Genetics in 2004


Born and raised on a pig farm

Norsvin Group

Costs per kg produced pork

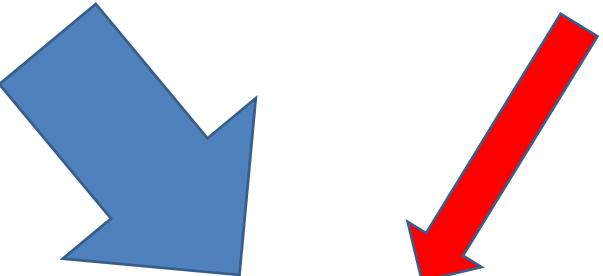
Source: Interpig 2009 and Ingris 2009/Norsvins DB 2009 NOK1 = €0,13

Folie 5

LU1

LENOVO USER; 02.12.2011

Long term, price of energy only going up


Price in Norway right; 1 liter = €1.8

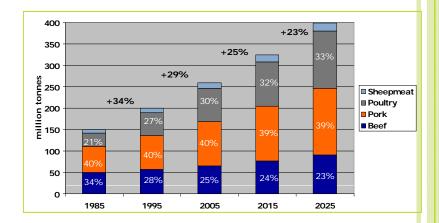
Feed cost in Norway; 1.62 € per/kg produced pork meat

Traditional US/European Swine Industry Parental Contribution to Enhanced Finishing Floor

Performance
Terminal Boar Contribution Dam Contribution

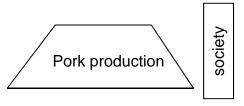
Market Pigs

STRATEGIC RESEARCH AGENDA


PIGS

Miguel A.Higuera
Bjarne Holm
Jean-Pierre Bidanel
Fenna Zijlmaker
Knol, Egbert

INTRODUCTION


- 40% of meat is pork
- Consumption will increase
- Competition with food and fuel
- Further reduction of costprice

Reproduction technologies

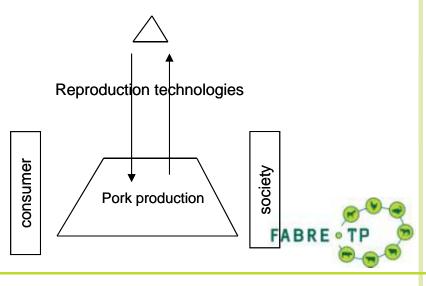
consumer

• Health: consumer

• Health: society

Animal welfare

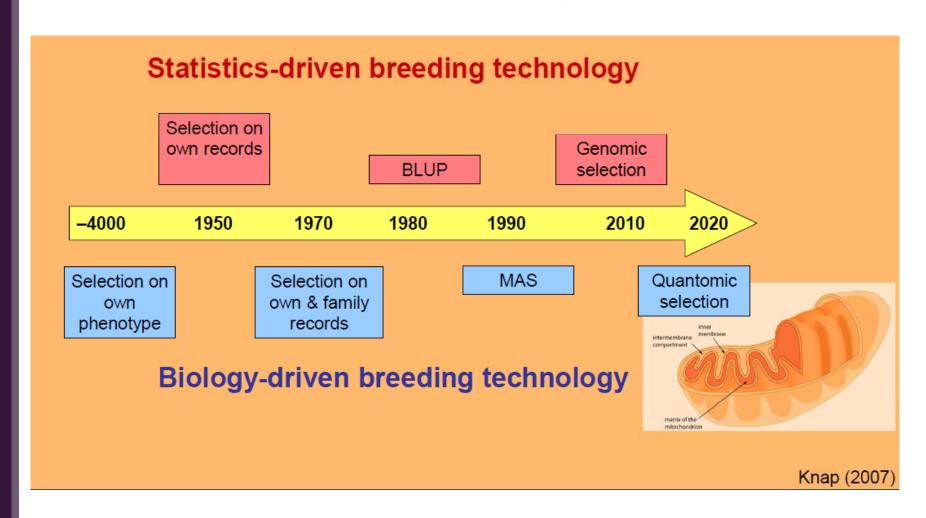
Climate change



CHALLENGES, KNOWLEDGE GAPS AND OPPORTUNITIES

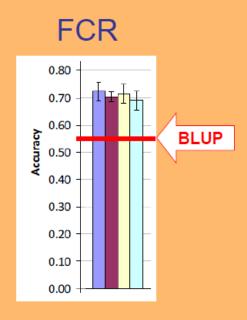
- Changing production environment:
 - Feeding
 - Housing
 - Health
- Imperfect understanding of:
 - Feed digestion
 - Genotype-environment interaction
 - Human and animal health

Opportunities

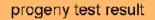

- GENOMICS
- Small flexible high health nucleus populations
- Further improvement of (feed) efficiency

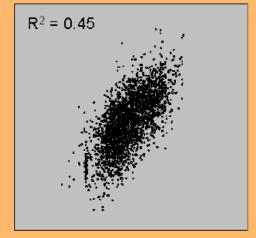
Knap, PIC

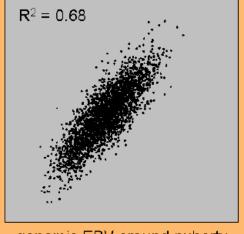
International Conference on Feed Efficiency November 9, 2011


Knap, PIC

International Conference on Feed Efficiency November 9, 2011


Genomic selection: the first implementation cases in pigs




27 % higher reliability →
27 % faster genetic improvement

progeny test result Litter size

genomic EBV around puberty

50 % higher reliability →
50 % faster genetic improvement

Huisman (2011)

Deeb (2010), Knap (2011)

PROBLEM OF STASIS

- Europe: many countries
- Breeding programs within countries
- Worldwide trade of meat
- Mainly SME's
- Cost and knowledge intense across species gen- and other -omics developments
- Need for European precompetitive cooperation
 - Between countries
 - Between disciplines
 - Between species
 - Between "humans and species"

RESEARCH PRIORITIES - SHORT TERM

Breeding goal

- Define future production environment
- Including welfare indicators
- Including environment sensitivity (where will production go to)

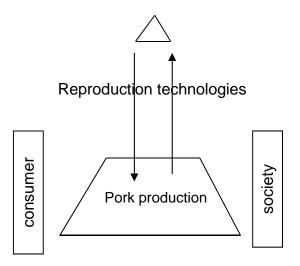
Technology

• Implementation of genomic technologies!!

Traits

- Cooperation between feeding and genetics in terms of by-products and gut health
- Mothering ability, better sows, longer living which prepare piglets for optimum finishing phase

RESEARCH PRIORITIES - LONG TERM


Exploiting gene – environment interaction

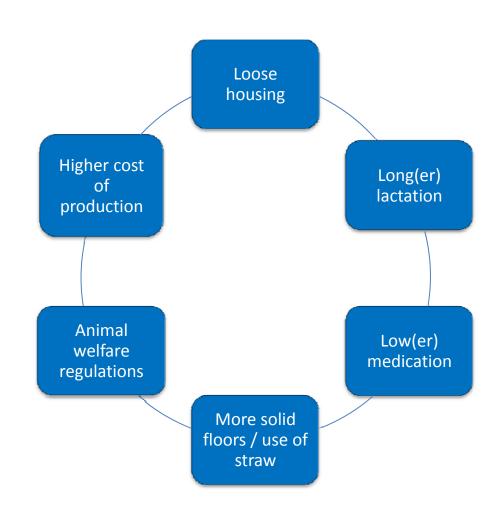
Identification of complex regulatory networks and epigenomic mechanisms at the whole-genome level;

- Need for fully annotated pig genome
- Need for accessible individual genetic identity card
- Offers optimum individual treatment in feeding and animal health
- o Offers 'PUP', predictable uniform pork

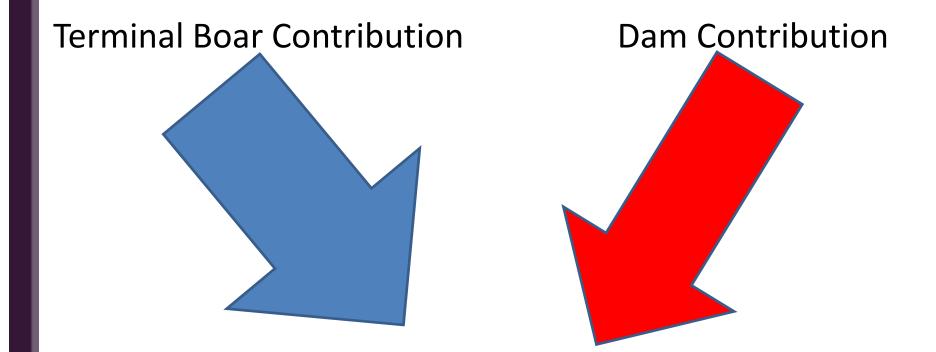
Conclusion I

Genetic selection can strongly help to maintain and strengthen a sustainable pork production.

Europe has a head start in open communication with consumers and society,

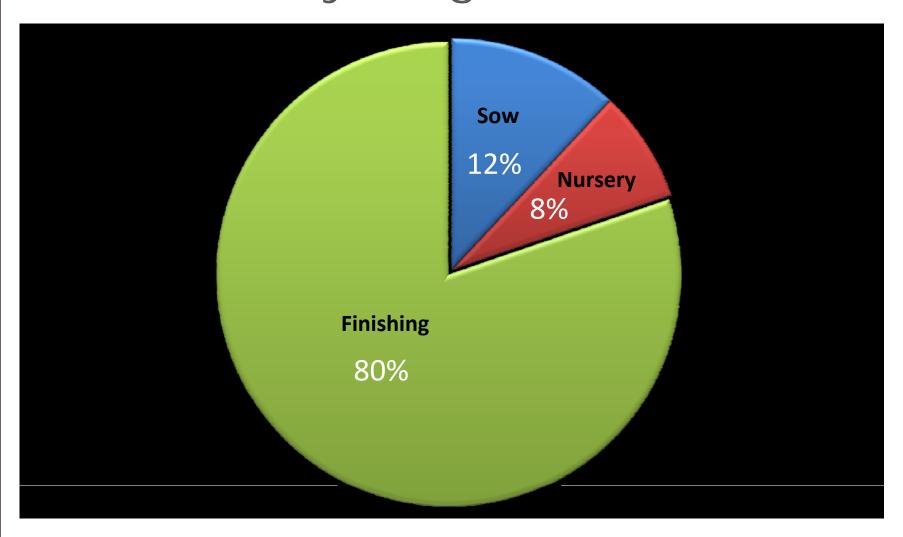


Components of modern maternal lines


Combine the need for improved pork production efficiency

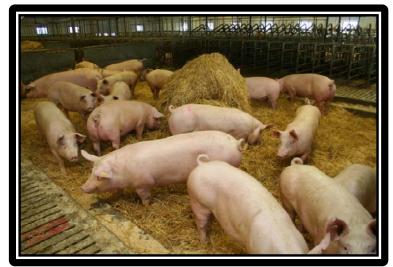
With

Sustainable, consumer and society approved, production



Future Parental Contribution to Enhanced Finishing Floor Performance

Market Pigs
50% genetic makeup from terminal sire
50% genetic makeup from dam


Percentage of Feed per Pig Produced by Stage of Production

chad@v-ast.com

Norsvin® LY – F1

Loose housing Gestation

- Structure
- Temperament

Loose housing Farrowing

- Structure
- Temperament
- Maternal behavior

High demand on capacity through maternal lines / maternal bi-products

 Sow productivity demand in loose housing:

> 30+ PSY 70% of entered gilts wean a 3rd litter

 Capacity maternal biproducts to 130kg live weight with "no" antibiotics:

> ~1000g/day 60-61 %-lean 2,2 FE

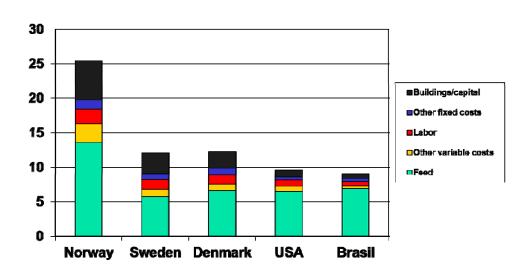
Score	1	2	3	4	5
	Emaciated	Thin/Poor	Good	Overweight	Over fat
Pin bones and tail	Very prominent pin bones and deep cavity around the tail setting	Pins bones covered but only slightly. Tail setting covered.	Pin bones covered, only felt with firm pressure. No cavity around tail.	Cannot feel pinbones. Root of tail set deep in surrounding fat.	Further deposition of fat is impossible.
Loin	Very narrow. Flank hollow. sharp edges on transverse spinal process.	Narrow, flank still rather hollow. Edge of transverse spinal process has some covered.	Flank full. Edge of transverse spinal process covered.	Flank full and rounded. Cannot feel bones.	Further deposition of fat is impossible. Body rotund.
Backbone	Verte bra prominent and sharp.	Prominent vertebrae.	Vertebrae just palpable with pressure.	Cannot find vertebrae.	Midline appears between rolls of fat.
Ribs	Individual ribs visible and prominent.	Ribs are still reasonable apparent and can be felt but there is cover.	Rib cage not visible and it is difficult to feel the ribs.	Cannot feel ribs.	Thick fat cover.

R&D costs are rising to meet future demands on performance

Focus even more on research and development that brings efficiency through the female

Norsvin Genetic Strategy

Create competitive advantage for an integrated industry


AI – Piglet production – Finishing – Packer – Processing – Consumer

Norsvin genetic strategy

- Combination high density phenotyping & genomic selection
- Keep focus on the integrated economic model
 - Including "all" aspects of chain of value in pork production
 - Wide and sustainable breeding goal
- Increased throughput through reduced mortality and morbidity
 - More emphasis on piglet quality
 - Proper use of piglet weights combined with other breeding goal traits
 - Direct as well as indirect selection for sow longevity
 - Possibilities for disease tolerance
- More accurate tools demands more surveillance of possible unfavorable side effects & close cooperation with customers
- Seek partnership to strengthen R&D and product quality

Norsvin is not a low cost strategy genetic supplier

Cost is a great motivator

Norsvin's mission and main task has for decades been to:

- Build a genetic system that brings efficiency, productivity and quality to the market hog and the pork from both the maternal and the terminal
- Simultaneously, develop a prolific but balanced female
 - Ave weaning age is 32 days

Norsvin, the short story

- Extremely expensive production circumstances in Norway, therefore the focus has been on <u>feed</u> <u>efficiency</u>, <u>productivity and prolificacy for more</u> <u>than 50 years</u>
- Norsvin is producer owned cooperative
- The same farmers also own the main packer and the feed provider
- → Broad breeding goals, including 'all' aspects of the industry; focus on fully-integrated system
 - AIM: Sustainable, long term genetic progress

Updated maternal breeding goals 2010: From quantity to quality

Efficiency Feed & Growth

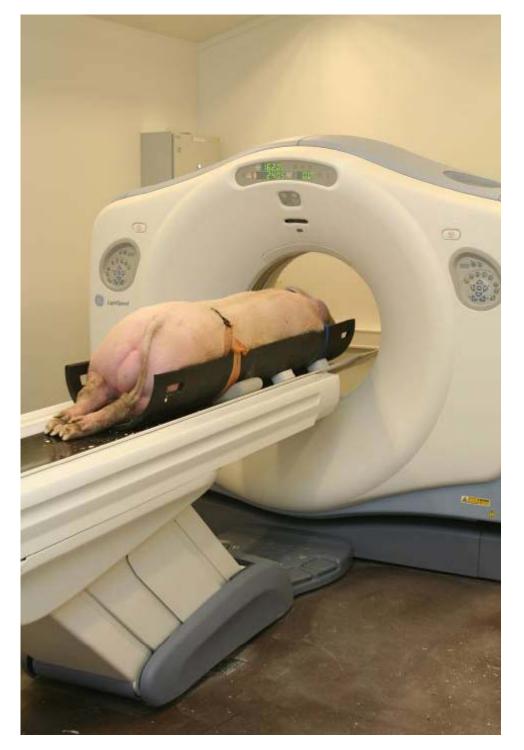
Preweaning mortality

Reproduction and maternal ability
Total born
Litter weight
Individual piglet weight at 3 weeks
Still born

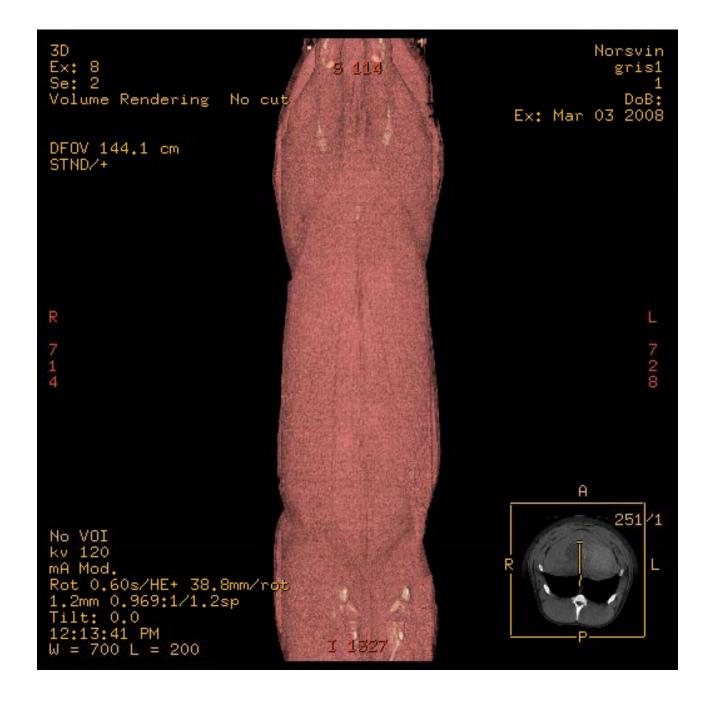
Exterior / robustness
Functional teats
Functionality
Sholder sore

Body condition at weaning

Complex reality


Norsvin Landrace (currently; repeatability model, ~50% P1 litters)

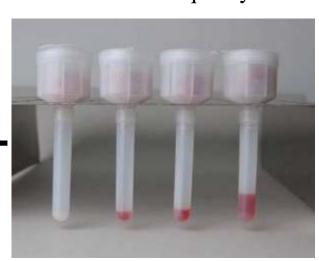
Landrace	ТВ	SB	PM	LW, d21	SS	BCW
ТВ	0,11	0,34	0,59	0,42	0,07	-0,15
SB		0,07	0,17	-0,06	0,12	-0,18
PM			0,07	-0,25	-0,14	0,11
LW, d21				0,09	0,11	-0,30
SS					0,22	-0,68
BCW						0,18

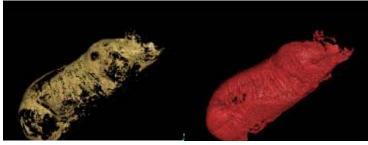

TRAITS	# RECORDS
TB: total born	<i>156 000</i>
SB: still born	<i>156 000</i>
PM: piglet mortality	<i>65 000</i>
LW: d21: litter weight at day 21	110 000
SS: shoulder ulcers	27 000
BCW: body condtion at weaning	23 000

Norsvin maternal and terminal boar test

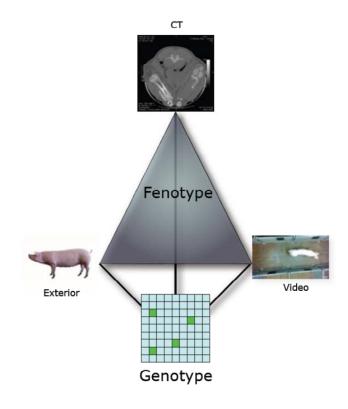
- -3,500 purebred boars on-test annually
- Test period: 35 to 120 kg
- During test:
 - Individual feed efficiency
 - Individual gain/growth curves
- Off test:
 - CT-scanning
 - Manuel and video evaluation of exterior

Hard but balanced selection


Efficiency and growth



Carcass, structure, etc


Meat- and fat quality

Robust pigs by improved exterior functionality and reduced osteochondrosis using non-invasive technology

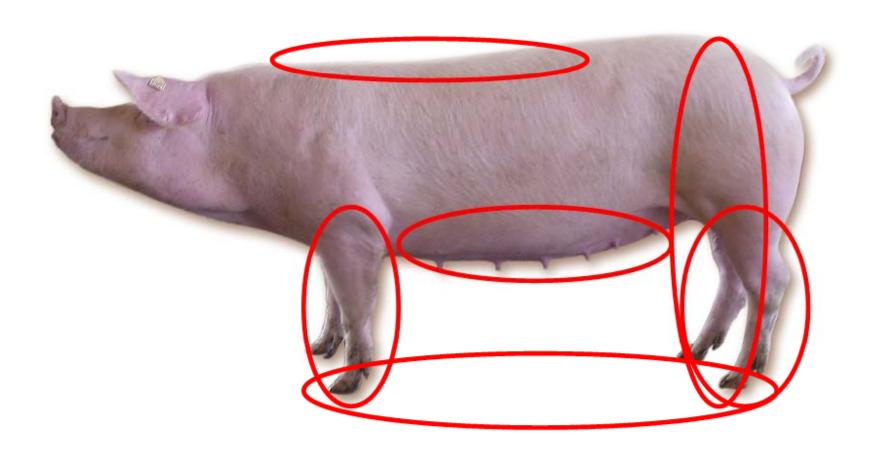
- Project leader Dr. Grindflek, Norsvin
- The project involves 1 senior scientist, 2 post.doc, 1 PhD-student, 50 % technicians, 75% scientific assistent, 2 PhD- advisors
- Ramme: 16 mill NOK/4 years
 - NVH
 - UMB
 - Norsvin
- Partly financed by Norwegian research council

7: Detected genes from sub goal 6, as well as biological candidate genes involved in robustness will be characterised in order to detect funtional SNPs 8: Development of an efficient breeding strategy to increase competitiveness nationally and internationally, from breeding, through production to meat refinement, based on the findings in sub-goals 1. to 7

1: Evaluate the objectivity of the current system used for assessment of exterior traits

6: Identify QTL affecting all robustness and production traits recorded in the project by high-throughput genome scan

Robust pig


to develop a more robust pig which is competitive in current and future pig markets. Such achievement will result in improved exterior functionality... 2: Promote better understanding of the complexity of exterior traits by anatomic and genetic studies

5:Develop objective evaluation of locomotion patterns by using video analyses.

4: Quantify the level and risk of osteochondrosis by using CT

3: Pilotstudy: Promote better understanding of underlying relationship between the cartilage blood supply and development of Osteochondrose (OC)

Subgoal 1 and 2: Exterior assement

Teat quantity and quality

Off-test and boar test:

- -Number of teats
- -Number of teats in front of navel,
- -Number of inverts,
- -Number of non normal

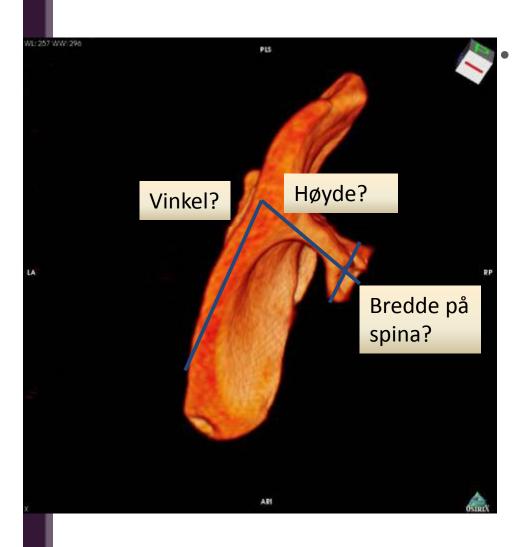
Boar test only:

- Distance from relaxed front leg to first teat

- Sagittal teat spacing

Table 2. Heritabilities + s.e. for Total Number of Teats and Number of Inverted Teats in Norwegian Landrace

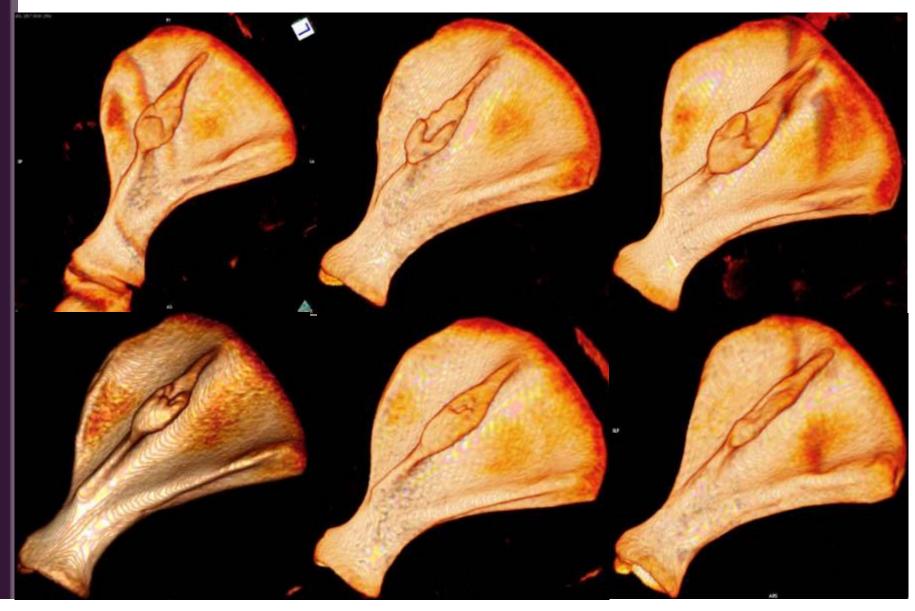
Trait	Heritability
Inverted Teats-Boars	0.21 <u>+</u> 0.03
Inverted Teats-Gilts	0.32 <u>+</u> 0.02
Total Teats-Boars	0.38 <u>+</u> 0.03
Total Teats-Gilts	0.41 <u>+</u> 0.02
	(Long et al., 2010)


UNDERLINES

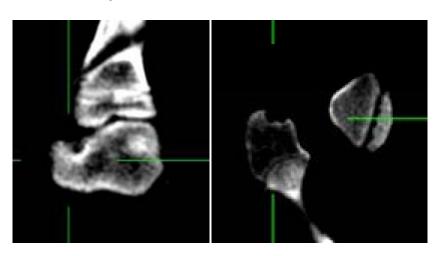
- Minimum of 14 functional teats
- Ave teat count on landrace piglets is 15.94
- Remember-Sows will lose mammary glands throughout their life

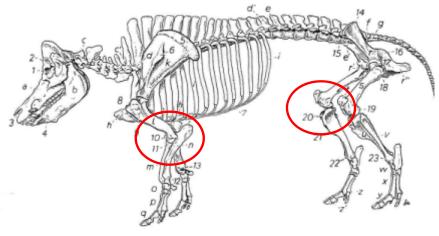
Shoulder lesions?

Why does sows get shoulder lesions?


- Body condition at weaning
- «Time spendt liing down»
- Morphology of shoulder blade?
 - Height of spina scapula?
 - Morphology of spina scapula?
 - Angle between spina og shoulder blade?

2D....3D...


Morfologi - variasjon

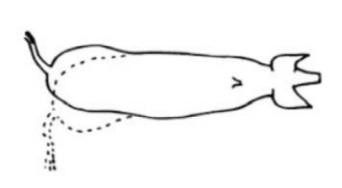


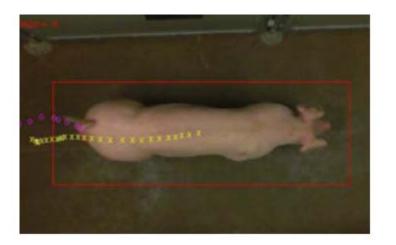
Sub goal 4: OC – Quantify the level and risk of osteochondrosis by using computed tomography (CT)

- Front leg: 2 x humerus- radius/ulna
- Hind leg: 2 x femur- tibia/fibula
 - Lateral and medial condyle
 - Modified Grøndalen

Observes high frequency of OC at medial distal femur position

Subgoal 5: Video analysis

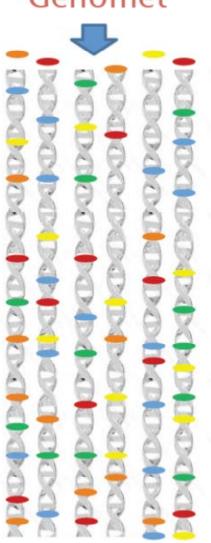

Goal: Collect information from still photos gathered vith a video device


Framegrabbing

Loop: Collect information from one picture

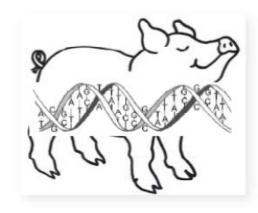
-> og to next picture

webcam4.mov



Subgoal 6 **Genomanalyse**

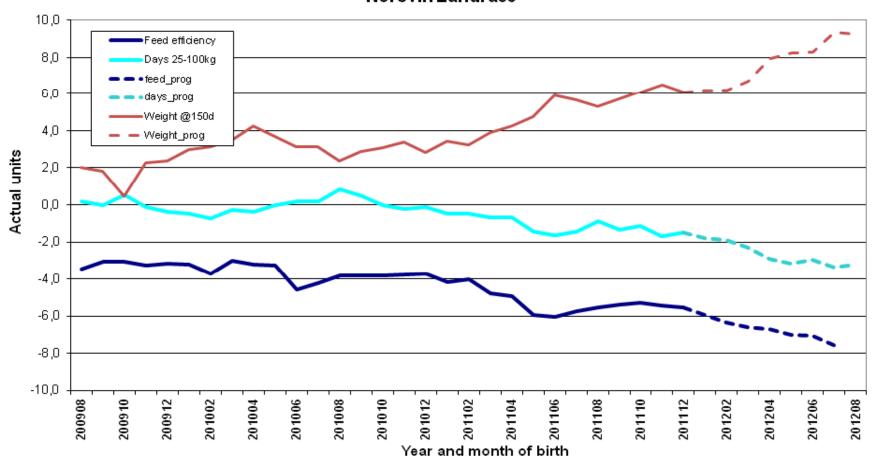
Grindflek, E. og Hamland, H.


Genomet

- Osteochondrose
- Eksteriør og holdbarhet
- Produksjon
- Helse
- Andre.....

Genetiske varianter på genomet (arvematerialet) som har betydning for robusthet og andre egenskaper.

Genom-avlsverdi


Genomseleksjon

Maternal breeding goal bringing it together

	Sub Index	% weight in Total EBV	Traits	% weight in sub index	% weight in overall EBV	Heritabilities
Total EBV	Production	14 %	Feed consumption, 25-100 kg (kg)	35 %	5 %	0,36
			Age at 25 kg (days)	19 %	3 %	0,54
			Days from 25 kg to 100 kg	46 %	6 %	0,41
	Carcass Quality	15 %	Killing out percentage	34 %	5 %	0,26
			Lean meat percentage	66 %	10 %	0,54
	Meat Quality	11 %	Drip loss (percent)	73 %	8 %	0,17
			Intramuscular fat	27 %	3 %	0,46
	Litter Size	21 %	Total born (#)	67 %	14 %	0,09
			Stillborn (#)	33 %	7 %	0,07
	Reproductive ability	1 %	Weaning service interval (days)	100 %	1 %	0,08
	Maternal ability	22 %	Piglet mortality(#)	74 %	16 %	0,07
			Number of teats (#)	8 %	2 %	0,39
			Inverted teats (#)	18 %	4 %	0,40 (B), $0,36$ (F)
	Robustness		Structure	50 %	8 %	-
			Osteochondrosis (points)	12 %	2 %	0,32
			Defects	11 %	2 %	-
			Shoulder sore (points)	6 %	1 %	0,22
			Body condition (points)	21 %	4 %	0,16

Genetic trend and prognosis

Norsvin Landrace

High demand on capacity through maternal lines / maternal bi-products

 Sow productivity demand in loose housing:

> 30+ PSY 70% of entered gilts wean a 3rd litter

 Capacity <u>maternal bi-</u> <u>products to 130kg live</u> <u>weight</u> with "no" antibiotics:

> ~1000g/day 60-61 %-lean 2,2 FE

